

【知识点 2.5】 ANSYS 算例 四杆桁架结构的有限元分析

如图 1 所示的结构,各杆的弹性模量和横截面积都为 $E = 29.5 \times 10^4 \text{ N/mm}^2$,

A=100mm²,试求解该结构的节点位移、单元应力以及支反力。

图1 四杆桁架结构

下面针对如图 1 所示的四杆桁架结构的问题,在 ANSYS 平台上,完成相应的力学分析。 解答:对该问题进行有限元分析的过程如下。

以下为基于 ANSYS 图形界面(GUI, graphic user interface)的菜单操作流程;注意:符号 "→"表示针对菜单中选项的鼠标点击操作。

1 基于图形界面(GUI)的交互式操作(step by step)

(1) 进入 ANSYS(设定工作目录和工作文件)

程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname(设置 工作文件名): <u>planetruss</u>→Run → OK

(2) 设置计算类型

ANSYS Main Menu: Preferences... → Structural → OK

(3) 选择单元类型

```
ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete... →Add... →Link: 2D spar 1
→OK (返回到 Element Types 窗口) →Close
```

(4) 定义材料参数

ANSYS Main Menu: **Preprocessor →Material Props →Material Models→Structural →Linear →** Elastic→ Isotropic: EX:<u>2.95e5</u>(弾性模量), PRXY: <u>0.3</u>(泊松比) → OK → 鼠标点击该窗口右上角的"×" 来关闭该窗口

(5) 定义实常数以确定单元的截面积

ANSYS Main Menu: Preprocessor →Real Constants... →Add/Edit/Delete →Add →Type 1→ OK→ Real Constant Set No:<u>1</u>(第1号实常数), AREA: <u>100(</u>单元的截面积) →OK→Close

(6) 生成单元

ANSYS Main Menu: Preprocessor \rightarrow Modeling \rightarrow Creat \rightarrow Nodes \rightarrow In Active CS \rightarrow Node number <u>1</u> \rightarrow X:0,Y:0,Z:0 \rightarrow Apply \rightarrow Node number <u>2</u> \rightarrow X:400,Y:0,Z:0 \rightarrow Apply \rightarrow Node number <u>3</u> \rightarrow X:400,Y:300,Z:0 \rightarrow Apply \rightarrow Node number <u>4</u> \rightarrow X:0,Y:300,Z:0 \rightarrow OK

ANSYS Main Menu: Preprocessor → Modeling → Create → Elements→Elem Attributes (接受默认 值)→User numbered→Thru nodes→ OK→选择 node 1 和 node2→ Apply→选择 node 2 和 node3→ Apply →选择 node 1 和 node3→ Apply→选择 node 4 和 node3→ Apply→OK

(7) 模型施加约束和外载

添加位移的约束,分别将1节点X和Y方向、2节点Y方向、4节点的X和Y方向位移约束。

ANSYS Main Menu: Solution → Define Loads → Apply → Structural → Displacement → On Nodes → 用鼠标选择节点 1→ Apply → Lab2 DOFs: UX, UY, VALUE: <u>0</u> → Apply→用鼠标选择节点 2→ Apply → Lab2 DOFs: UY, VALUE: <u>0</u> → Apply→用鼠标选择节点 4→ Apply → Lab2 DOFs: UX,UY, VALUE: <u>0</u> → OK

加载集中力

ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Force/moment→ On Nodes →用鼠标选择结构节点 2→ Apply →FX, VALUE: <u>20000</u> → Apply→用鼠标选择结构节点 3→ Apply → FY, VALUE: <u>-25000</u> →OK

(9) 分析计算

ANSYS Main Menu: Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK \rightarrow Should The Solve Command be Executed? Y \rightarrow Close (Solution is done!) \rightarrow 关闭文字窗口

(10) 结果显示

ANSYS Main Menu: General Postproc → Plot Results →Deformed Shape ... → Def + Undeformed → OK (返回到 Plot Results) → Contour Plot → Nodal Solu ... → DOF solution→Displacement vector sum (可以看到位移云图)

ANSYS Main Menu: General Postproc → List Results → Nodal solution → DOF solution → Displacement vector sum (弹出的文本文件显示各个节点的位移)

ANSYS Main Menu: General Postproc →List Results →Reaction Solu→ALL items→ OK (弹出的文 本文件显示各个节点反力)

ANSYS Main Menu: General Postproc →List Results →Nodal Solution→Displacement vector sum→ OK (弹出的文本文件显示各个节点位移值)

(11) 退出系统

ANSYS Utility Menu: File→ Exit ...→ Save Everything→OK

2 完整的命令流

以下为命令流语句;注意:以"!"打头的文字为注释内容,其后的文字和符号不起运 行作用。

!%%%%%%%%% 四杆桁架结构的有限元分析%%%% begin %%%%%%%

/ PREP7	!进入前处理
/PLOPTS,DATE,0	!设置不显示日期和时间
!====-设置单元、材料,	生成节点及单元
ET,1,LINK1	!选择单元类型
UIMP,1,EX, , ,2.95e5,	!给出材料的弹性模量
R,1,100,	!给出实常数(横截面积)
N,1,0,0,0,	!生成1号节点,坐标(0,0,0)
N,2,400,0,0,	!生成2号节点,坐标(0.4,0,0)
N,3,400,300,0,	!生成3号节点,坐标(0.4,0.3,0)

《有限元分析及应用》上机指南

N,4,0,300,0,	!生成4号节点,坐标(0,0.3,0)
E,1,2	!生成1号单元(连接1号节点和2号节点)
E,2,3	!生成2号单元(连接2号节点和3号节点)
E,1,3	!生成3号单元(连接1号节点和3号节点)
E,4,3	!生成4号单元(连接4号节点和3号节点)
FINISH	!前处理结束
!====在求解模均	央中, 施加位移约束、外力, 进行求解
/SOLU	!进入求解状态(在该状态可以施加约束及外力)
D,1,ALL	!将1号节点的位移全部固定
D,2,UY,	!将2号节点的y方向位移固定
D,4,ALL	!将4号节点的位移全部固定
F,2,FX,20000,	!在2号节点处施加 x 方向的力(20000)
F,3,FY,-25000,	!在3号节点处施加y方向的力(-25000)
SOLVE	!进行求解
FINISH	!结束求解状态
!====进入一般的后处理模块	
/POST1	!进入后处理
PLDISP,1	!显示变形状况
PRRSOL,	!显示支反力
PRNSOL,U,COM	P !显示节点位移值
FINISH	!结束后处理
!%%%%%%%%%	四杆桁架结构的有限元分析%%%% end %%%%%%%